90 research outputs found

    Steel nitriding optimization through multi-objective and FEM analysis☆

    Get PDF
    Abstract Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical–experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters–output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions. Highlights The paper shows the development of a model based on very broad experimental activity. The data were employed to provide a provisional tool for nitrided steel mechanical and microstructural behavior. A very good experimental–numerical correlation was found

    Multi-objective optimization of steel nitriding

    Get PDF
    Steel nitriding is a thermo-chemical process largely employed in the machine components production to solve mainly wear and fatigue damage in materials. The process is strongly influenced by many different variables such as steel composition, nitrogen potential (range 0.8–35), temperature (range 350–1200 °C), time (range 2–180 hours). In the present study, the influence of such parameters affecting the nitriding layers' thickness, hardness, composition and residual stress was evaluated. The aim was to streamline the process by numerical–experimental analysis allowing to define the optimal conditions for the success of the process. The optimization software that was used is modeFRONTIER (Esteco), through which was defined a set of input parameters (steel composition, nitrogen potential, nitriding time, etc.) evaluated on the basis of an optimization algorithm carefully chosen for the multi-objective analysis. The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated through control designs and optimized by taking into account physical and processing conditions

    Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry

    Get PDF
    The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus, the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining "green hydrogen". The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact, we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed. Keywords: water electrolysis; ironmaking; steelmaking;

    Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New-Generation Steelmaking

    Get PDF
    The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces, allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic, chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional routes

    Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking

    Full text link
    The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces, allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic, chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional route

    Improving the Wear and Corrosion Resistance of Maraging Part Obtained by Cold Gas Spray Additive Manufacturing

    Get PDF
    The use of the cold gas spray (CGS) process as a metal additive manufacturing (MAM) technique for metallic part production has been deeply studied recently, mainly due to its advantages over other MAM techniques. CGS MAM is a high-productivity technique with a very low level of particle oxidation, microstructural changes, phase transformations, or deleterious residual thermal stresses in the part. The use of CGS MAM to produce maraging parts represents a gain for the industry by saving machining time and preventing raw material waste. Its wear resistance and corrosion behavior were evaluated in this work and were compared with cermet coatings deposited by high-velocity oxy-fuel (HVOF) on the CGS MAM maraging. This work presents the innovative and effective combination of different thermal spraying processes and materials to obtain MAM maraging parts with higher wear resistance, evaluating abrasion, sliding, and water erosion wear type

    The influence of the powder characteristics on 316L stainless steel coatings sprayed by cold gas spray

    Get PDF
    Thermally sprayed 316L stainless steel coatings are commonly used on metallic structures due to their corrosion and wear resistance when compared to carbon steel. Cold Gas Spray (CGS) is a convenient thermal spray process to deposit 316L coatings, producing thick and very dense coatings, with almost no deleterious changes on the feedstock properties to the coating condition. The powder characteristics have influence on the microstructure of the coating, such as porosity and oxide contents, which alter its corrosion and wear behavior. CGS is an efficient technique to reduce the problems associated with material melting commonly found in other conventional thermal spray methods. In this work, different 316L powders, produced by different manufacturers, were deposited by CGS, applying the same equipment and parameters, with the objective to evaluate the relation between the powders' characteristics and coating properties. Their microstructure, adherence, hardness, as well as the performance on corrosion and wear testing were evaluated. The water atomized powders presented in general better results than gas atomized powders

    Microstructural, Mechanical and Wear Behavior of HVOF and Cold-Sprayed High-Entropy Alloys (HEAs) Coatings

    Full text link
    HEAs powders, unlike standard alloys which contain one or two base elements, are new alloys that contain multiple elements in the same quantity. These materials have outstanding physical and mechanical properties and for this reason, are of great interest in the material science community for their application in advanced industrial sectors. In this investigation, cold spray (CS) and high-velocity oxy fuel (HVOF) processes were used to deposit Cantor alloy (FeCoCrNiMn) coatings. Starting feedstock powders were thoroughly characterized in terms of size, shape, phase and elastic modulus. For CS process, the coating deposition efficiency and porosity could be optimized by varying gas pressure, gas temperature and stand-off distance. In the case of HVOF process, stand-off distance influenced the thickness of the coatings. Besides, on the optimized CS and HVOF coatings, corrosion tests in 3.5% NaCl solution, as well as rubber wheel, ball on disk and jet erosion tests were carried out to evaluate their wear behavior. Also, to benchmark the corrosion and wear behavior of optimized coatings, the results were compared to 316L and C-Steel bulks. The tribological study shows that Cantor alloy coatings deposited via CS and HVOF are promising to protect parts and components in a harsh environment

    Kaolinite structural modifications induced by mechanical activation

    Full text link
    This study presents novel characterisation techniques to evaluate the effects of mechanical activation (MA) on the kaolinite structure. MA was achieved with a planetary ball mill at various times and rotation speeds to get different activation degrees. A thermal activation was performed for comparison purposes. The results of X-ray diffraction and selective area electron diffraction demonstrated that the kaolinite content was significantly reduced as the amorphous phase increased. Illite, K-feldspars, and quartz impurities were extensively modified as well. The morphology of kaolinite particles is altered. Furthermore, the mechanical treatments significantly affected the hydroxyls, losing bonding strength with the structure, as stated with 1H nuclear magnetic resonance. Thermogravimetric analysis and infrared spectroscopy also revealed that water molecules could be formed due to the reaction of hydroxyls between them or with the atmosphere. This work improves the comprehension of MA on kaolin by clearly confirming with new techniques that the mechanical treatments distort the kaolinite structure
    • 

    corecore